數學系學術講座(六十一、六十二)

發布時間: 2024-11-26 來源: 太阳集团1088vip

題目一:采樣理論與相位恢複

内容簡介:采樣定理是信号分析中的一個基本結果。我們簡要介紹頻譜有限函數空間和平移不變函數空間上的采樣理論,以及采樣理論在小波框架的構造和相位恢複中的應用。

報告人:孫文昌

報告人簡介:南開大學數學科學學院教授,主要研究小波分析與調和分析,多次主持國家自然科學基金和教育部博士學科點基金項目,在Advances in Mathematics, Mathematische Annalen, Journal of Functional Analysis, Applied and Computational Harmonic Analysis, Mathematics of Computation, IEEE Transactions on Information Theory, Optics CommunicationsSCI期刊發表90多篇論文。孫文昌曾獲得國家傑出青年科學基金(2015),國務院政府特殊津貼(2010年度),天津市自然科學一等獎(第一完成人,2008年),天津青年科技獎(2008年),微軟青年教授獎(2006年),教育部新世紀優秀人才支持計劃(2004年)。


題目Unbiased Markov chain quasi-Monte Carlo for Gibbs samplers

内容簡介:In statistical analysis, Monte Carlo (MC) stands as a classical numerical integration method. When encountering challenging sample problem, Markov chain Monte Carlo (MCMC) is a commonly employed method. However, the MCMC estimator is biased after a fixed number of iterations. Unbiased MCMC, an advancement achieved through coupling techniques, addresses this bias issue in MCMC. It allows us to run many short chains in parallel. Quasi-Monte Carlo (QMC), known for its high order of convergence, is an alternative of MC. By incorporating the idea of QMC into MCMC, Markov chain quasi-Monte Carlo (MCQMC) effectively reduces the variance of MCMC, especially in Gibbs samplers. This work presents a novel approach that integrates unbiased MCMC with MCQMC, called as an unbiased MCQMC method. This method renders unbiased estimators while improving the rate of convergence significantly. Numerical experiments demonstrate that for Gibbs sampling, unbiased MCQMC with a sample size of N yields a faster root mean square error (RMSE) rate than the  O(N^{-1/2}) rate of unbiased MCMC, toward an RMSE rate of O(N^{-1}) for low-dimensional problems. Surprisingly, in a challenging problem of 1049-dimensional P\'olya Gamma Gibbs sampler, the RMSE can still be reduced by several times for moderate sample sizes. In the setting of parallelization, unbiased MCQMC also performs better than unbiased MCMC, even running with short chains. This is joint work with Jiarui Du.

報告人:何志堅

報告人簡介:華南理工大學數學學院教授、博導、副院長,廣東省計算數學學會副理事長,廣東省現場統計學會理事。于20157月在清華大學獲得理學博士學位。研究興趣為随機計算方法與不确定性量化,特别是拟蒙特卡羅方法的理論和應用研究。目前發表SCI論文20餘篇,其中11篇發表在統計學和計算科學的國際著名刊物Journal of the Royal Statistical Society: Series BSIAM Journal on Numerical AnalysisSIAM Journal on Scientific ComputingMathematics of Computation。博士論文獲得新世界數學獎(ICCM畢業論文獎)銀獎。主持一項國家級青年人才計劃項目、兩項國家自然科學基金項目以及四項省部級項目。


時  間:2024122日(周一)下午1400開始

地  點:騰訊會議:399-983-478


熱烈歡迎廣大師生參加!



太阳集团1088vip

20241125