題 目:Sparse Phase Retrieval under Fourier-based Measurement
内容簡介:We consider the sparse phase retrieval problem, that is, recovering an unknown s-sparse signal from the intensity-only measurements. Specically, we focus on the problem of recovering x from the observations that are convoluted with some specfic kernel, it can also be considered as masked Fourier measurements. This model is motivated by real-world applications in optics and communications. If the convolutional kernel is generated by a random Gaussian vector and the number of subsampled measurements is on the order of spolylogn, one can recover x up to a global phase. Here we discuss the behavior of sparse phase retrieval under more realistic measurements, as opposed to independent Gaussian measurements.
報告人:夏羽
報告人簡介:杭州師範大學數學學院副教授,畢業于浙江大學數學系 (導師:李松教授)。主要從事信号圖像處理中的數學理論和算法研究. 現階段在應用數學及數學與信息交叉領域發表一系列學術論文,包括 Applied and Computational Harmonic Analysis, Inverse Problems, IEEE Transactions on Information Theory, IEEE Transactions on Signal Processing等。主持國家自然科學基金項目兩項。
時 間:2024年11月17日(周日)上午9:30開始
地 點:騰訊會議:554-725-402
熱烈歡迎廣大師生參加!
太阳集团1088vip
2024年11月14日