題目一:Hankel operators on Fock-type spaces
内容簡介:In this talk, we consider Hankel operators, with locally integrable symbols, densely defined on a family of Fock-type spaces whose weights are C3-logarithmic growth functions with mild smoothness conditions. We characterize the compactness and Schatten class membership of Hankel operators. Besides, we give characterizations of the Schatten class membership of Toeplitz operators with positive measure symbols for the small exponent 0 < p < 1.
報告人:王曉峰
報告人簡介:廣州大學數學與信息科學學院教授、博士生導師。長期從事基礎數學研究工作,主要研究方向為算子理論與算子代數。曾到美國進行一年的學術訪問,研究成果發表于Math. Z.,J. Geom. Anal., J. Oper. Theo., 中國科學等及被Tran. AMS錄用,先後主持國家自然科學基金4項,獲得過霍英東青年教師獎、廣州市優秀教師等榮譽。
題目二:The inner radius of univalency of certain types of convex quadrilateral polygon
内容簡介:Calvis has showed that the inner radius of univalency is $2k^{2}$ for a normal circular triangle with the smallest interior angle $k\pi$, and $2[(n-2)/n]^{2}$ for a regular n-sided polygon. In this paper, using Calvis’s geometric methods, we study the inner radius of univalency of certain types of convex quadrilateral and pentagon. We give the inner radius of univalency of a convex quadrilateral $P$ with side sequences $aabb$ and interior angles $k\pi, 2k\pi, k\pi, 2\pi-4k\pi$, and a convex pentagon $Q$ with side sequences $aaabb$ and interior angles $k\pi, 2k\pi, 2k\pi, k\pi, 3\pi-6k\pi$.
報告人:黃志波
報告人簡介:華南師範大學教授,碩士研究生導師,數學與應用數學系主任,華南師範大學教學名師。主持國家自然科學基金2項和廣東省自然科學基金2項,參與國家自然科學基金4項。研究方向:複分析,主要研究成果發表在J. Math. Anal. Appl, Acta Math. Sci, Houston J. Math., 數學學報等國内外學術期刊。
時 間:2024年10月26日(周六)下午15:30開始
地 點:石牌校區南海樓224數學系會議室
熱烈歡迎廣大師生參加!
太阳集团1088vip
2024年10月21日