數學系學術講座(二十)

發布時間: 2024-05-27 來源: 太阳集团1088vip

  目:Randomized Neural Networks with Petrov-Galerkin Methods for Solving Linear Elasticity and Navier-Stokes Equations

内容簡介:We develop the Randomized Neural Networks with Petrov-Galerkin Methods (RNN-PG methods) to solve linear elasticity and Navier-Stokes equations. RNN-PG methods use the Petrov-Galerkin variational framework, where the solution is approximated by randomized neural networks and the test functions are piecewise polynomials. Unlike conventional neural networks, the parameters of the hidden layers of the randomized neural networks are fixed randomly, while the parameters of the output layer are determined by the least squares method, which can effectively approximate the solution. We also develop mixed RNN-PG (M-RNN-PG) methods for linear elasticity problems, which ensure the symmetry of the stress tensor and avoid locking effects. For the Stokes problem, we present various M-RNN-PG methods that enforce the divergence-free constraint by different techniques. For the Navier-Stokes equations, we propose a space-time M-RNN-PG method that uses Picard or Newton iteration methods to deal with the nonlinear term. We compare RNN-PG methods with the finite element method, the mixed discontinuous Galerkin method, and the physics-informed neural network on several examples, and the numerical results demonstrate that RNN-PG methods achieve higher accuracy and efficiency.

報告人:王飛

報告人簡介:西安交通大學數學與統計學院教授、博士生導師,Commun. Nonlinear Sci.Numer. Simul. 副主編。2010年獲浙江大學數學博士學位。2010—2012年,在華中科技大學任教;2012年-2013年,為美國愛荷華大學客座助理教授;2013年-2016年,為美國賓州州立大學Research Associate2015年入選西安交通大學青年拔尖人才B類(副教授),2017年入選陝西省青年百人,2022年入選西安交通大學青年拔尖人才A類(教授)。研究領域為數值分析與科學計算,主要研究興趣包括:有限元分析及其應用,變分不等式的數值方法,求解偏微分方程的神經網絡方法等。主持國家自然科學基金面上項目2項、青年基金1項。已在國際 SCI 期刊發表論文五十篇,其中包括計算數學方向的頂級期刊:SIAM J Numer. Anal.IMA J Numer. Anal.Numer. Math.Comput. Methods Appl. Mech. Eng. 等。

  間:202461日(周六)下午1430開始

  點:騰訊會議:59157539380

 

熱烈歡迎廣大師生參加!

 

 

太阳集团1088vip

2024525