網絡空間安全系學術講座(十五、十六、十七)

發布時間: 2024-03-21 來源: 太阳集团1088vip

 

題目一:波達方向估計的低秩嵌入理論與方法

内容簡介:目标測向又稱波達方向估計,是雷達偵測的基礎。本報告針對現有波達方向估計算法在困難場景下精度不足的問題,提出了一系列基于低秩嵌入的數學模型和算法。該方法從極大似然估計出發,通過将信号嵌入到結構性低秩矩陣中,精确刻畫了雷達信号中常見的單通道、多通道和恒模等幾何結構,将具有嚴重非凸性的原參數域優化問題等價刻畫為信号域中的結構性低秩矩陣恢複問題,為原非凸優化問題求解提供了全新思路,帶來了波達方向估計算法精度的本質提升。最後,本報告探讨了未來可能的研究方向。

報告人:楊在

報告人簡介:西安交通大學數學與統計學院教授、博士生導師。20072009年分獲中山大學應用數學本科和碩士學位,2014年獲新加坡南洋理工大學博士學位。主要從事信息處理與無線通信的數學理論與方法研究,解決了Carathéodory-Fejér定理高維形式、兩奇異半正定矩陣Hadamard積的正定性判定等公開問題,在IEEE Trans. Inf. TheoryIEEE Trans. Signal Process.Appl. Comput. Harmonic Anal.等期刊與會議發表學術論文60餘篇,谷歌學術引用3600餘次。任或曾任IEEE Trans. Signal Process.期刊編委、歐洲信号處理會議Tutorial主講人、IEEE信号處理學會傳感器陣列與多通道(SAM)技術委員會委員。主持4項國家基金委項目(青年、兩個面上及優青項目)、1項科技部重點研發課題,及多項華為企業橫向課題。

 

題目二:A Direct Method for Calculating the Differential Spectrum of an APN Power Mapping

内容簡介:Let $n$ be a positive integer,  $p$ be an odd prime,  $d=\frac{p^n+1}{4}+\frac{p^n-1}{2}$ if $p^n \equiv3 ~({\rm mod ~8})$ and $d=\frac{p^n+1}{4}$ if $p^n \equiv7 ~({\rm mod ~8})$.   When $p^n>7$, the power mapping $x^d$ from $\mathbb{F}_{p^n}$ to  $\mathbb{F}_{p^n}$ was proved to be almost perfect nonlinear by Helleseth, Rong and Sandberg in  IEEE Trans. Inform. Theory, 45(2): 475-485, 1999.   By establishing a system of linear equations related to the differential spectrum, Tan and Yan completely determined the differential spectrum of this power mapping in Des. Codes Cryptogr., 91(8): 2755-2768, 2023. In this talk, we will introduce another method of determining the differential spectrum of this APN function. We directly characterize the conditions on $b\in \mathbb{F}_{p^n}$ for which the differential $(x+1)^d-x^d=b$ has exactly $i$ solution(s) for $i=0,1,2$, respectively. Then, using the theory of elliptic curves, the number of  those $b$'s in each case  is determined and thus the differential spectrum of $x^d$ is obtained. Our method releases more information about the differential equation of $x^d$, which can be used to describe the DDT of this APN power function.

報告人:夏永波

報告人簡介:中南民族大學教授,主持國家自然科學基金面上項目2項,國家自然科學基金青年項目1項,湖北省自然科學基金面上項目2項;在《IEEE Transactions on Information Theory》、《Finite Fields and Their Applications》、《Cryptography and Communications》、《中國科學數學(英文版)》等期刊上發表論文30餘篇。曾獲2018年湖北省自然科學獎二等獎(排名2)、2018年湖北省教學成果獎三等獎(排名3)、2019年國家民委教學成果獎二等獎(排名1),2019年入選國家民委青年教學标兵,2020年入選國家民委中青年英才培養計劃。

 

題目三:Proximal linearized alternating direction method of multipliers algorithm for nonconvex image restoration with impulse noise

内容簡介:Image restoration with impulse noise is an important task in image processing. Taking into account the statistical distribution of impulse noise, the $\ell_1$-norm data fidelity and total variation ($\ell_1TV$) model has been widely used in this area. However, the $\ell_1TV$ model usually performs worse when the noise level is high. To overcome this drawback, several nonconvex models have been proposed. In this paper, we propose an efficient iterative algorithm to solve nonconvex models arising in impulse noise. Compared to existing algorithms, our proposed algorithm is a completely explicit algorithm in which every subproblem has a closed-form solution. The key idea is to transform the original nonconvex models into an equivalent constrained minimization problem with two separable objective functions, where one is differentiable but nonconvex. As a consequence, we employ the proximal linearized alternating direction method of multipliers to solve it. We present extensive numerical experiments to demonstrate the efficiency and effectiveness of the proposed algorithm.

報告人:唐玉超

報告人簡介:廣州大學數學與信息科學學院,教授。主要研究方向圖像處理中的優化模型和算法及其應用。在研國家自然科學基金項目和省傑出青年科學基金項目各1項,主持完成國家自然科學基金地區項目和國家自然科學基金青年項目各1項。已在《CSIAM Transactions on Applied Mathematics》、《Journal of Scientific Computing》,《Inverse Problems and Imaging》、《Set-Valued and Variational Analysis》和《中國科學數學》等國内外知名期刊發表SCI收錄論文30餘篇。中國數學會和中國工業與應用數學學會會員。美國數學評論員(112437)。20169—20179月,受國家留學基金委資助在美國北卡羅來納大學教堂山分校訪問研究一年。

 

  間:2024322日(周五)上午930開始

  點:南海樓124

 

熱烈歡迎廣大師生參加!

 

 

太阳集团1088vip/網絡空間安全學院

2024321