題 目:The number of limit cycles of Josephson equation
内容簡介:In this talk, we will study the Josephson equations,which can be transformed the following Lienard systems on the cylinder: x’(t)=y, y’(t)=-(sin x-a)-(b+c cos x)y. We concern the non-contractible limit cycles, which are the isolated 2\pi-periodic solutions y=y(x). This problem is equivalent to study the non-zero limit cycles of the following Abel equations y’(x)=(b+cos x)y^2-(sin x-a) y^3. By the theory of rotation vectors and studying the multiplicity of limit cycles, we will show that at most two non-zero limit cycles can appear. Our work can be also viewed as a step to solve the following open problem: Open problem: y’(x)=(a_0+a_1 sin x+a_2 cos x)y^3+(b_0+b_1 sin x+b_2 cos x)y^2 have at most three limit cycles (The trivial limit cycle y=0 is included). This is a joint work with Xiangqin Yu and Hebai Chen.
報告人:劉長劍 教授
報告人簡介:中山大學數學學院(珠海)教授。本、碩、博均畢業于北京大學,并獲北京大學-裡爾第一大學聯合培養博士學位。主要從事常微分方程與動力系統方面的研究,在Trans. AMS, JDE, Nonlinearity 等雜志發表論文40餘篇,主持多項國家自然科學基金面上項目。
時 間:2023年5月4日(周四)上午 10:00 始
地 點:太阳集团app首页番禺校區 教學樓 N421
熱烈歡迎廣大師生參加!
太阳集团1088vip
2023年4月28日