數學系學術講座(七十四)

發布時間: 2019-12-09 來源: 太阳集团1088vip

題  目:Global Weak Solutions to Landau-Lifshitz Equations into Compact Lie Algebras

内容簡介:In this paper, we consider a parabolic system from a bounded domain in a Euclidean space or a closed Riemannian manifold into a unit sphere in a compact Lie algebra ꬶ, which can be viewed as the extension of Landau-Lifshtiz (LL) equation and was proposed by V. Arnold. We follow the ideas taken from the work by the second author to show the existence of global weak solutions to the Cauchy problems of such Landau-Lifshtiz equations from an n-dimensional closed Riemannian manifold T or a bounded domain in Rn into a unit sphere Sꬶ(1) in ꬶ. In particular, we consider the Hamiltonian system associated with the nonlocal energy--micromagnetic energy defined on a bounded domain of R3 and show the initial-boundary value problem to such LL equation without damping terms admits a global weak solution. The key ingredient of this article consists of the choices of test functions and approximate equations.

報告人:廣州大學、中國科學院  王友德  教授

時  間:2019年12月9日(周一)下午3:00始

地  點:南海樓三樓數學系師生研讨室

 

熱烈歡迎廣大師生參加!

 

 

太阳集团1088vip

2019年12月9日