題 目:Propagation dynamics of a time periodic and delayed reaction-diffusion model without quasi-monotonicity
内容簡介:In this talk, we consider a time periodic non-monotone and nonlocal delayed reaction-diffusion population model with stage structure. We first prove the existence of the asymptotic speed $c^*$ of spread by virtue of two auxiliary equations and comparison arguments. By the method of super- and sub-solutions and the fixed point theorem,as applied to the truncated problem on a finite interval, and the limiting arguments, we then establish the existence of time periodic traveling wave solutions of the model system with wave speed $c>c^*$. We further use the results of the asymptotic speed of spread to obtain the nonexistence of traveling wave solutions for wave speed $c<c^*$. Finally, we prove the existence of the critical periodic traveling wave with wave speed $c=c^*$. It turns out that the asymptotic speed of spread coincides with the minimal wave speed for positive periodic traveling waves. These results are also applied to the model system with two prototypical birth functions.
報告人:蘭州大學 王智誠 教授
報告人簡介:博導。主要從事偏微分方程、動力系統、生物數學等方面的研究,在Trans. AMS、SIAM J. Math. Anal.、JMPA、Calc. Var. PDE、JDE、JDDE、Nonlinearity、J. Math. Biol.、J. Nonlinear Sci、Proc. Royal. Soc. A、Proc. Royal. Soc. Edinburgh A、DCDS等雜志發表SCI論文60多篇,其中多篇論文論文入選ESI高引用論文,一篇論文入選2008年“中國百篇最具影響國際學術論文”。2010年入選教育部新世紀優秀人才支持計劃,2011年獲得甘肅省自然科學二等獎,2016年入選甘肅省飛天學者特聘教授,主持完成兩項國家自然科學基金面上項目以及教育部博士點基金(新教師類)等多項省部級項目,正在參加一項國家自然科學基金重點項目。目前擔任兩個SCI雜志International J. Bifurc. Chaos和Mathematical Biosciences and Engineering (MBE)的編委(Associate editor)。
時 間:2019年11月29日(周五)上午10:00始
地 點:南海樓224室
熱烈歡迎廣大師生參加!
太阳集团1088vip
2019年11月27日