網絡空間安全學院學術講座(十一、十二)

發布時間: 2019-09-16 來源: 太阳集团1088vip

 

題目一:Semidefinite Relaxations for MIMO Detection: Tightness, Tighterness, and Beyond

内容簡介:Multiple-input multi-output (MIMO) detection is a fundamental problem in modern digital communications. Semidefinite relaxation (SDR) based algorithms are a popular class of approaches to solving the problem because the algorithms have a polynomial-time worst-case complexity and generally can achieve a good detection error rate performance. In this talk, we shall first develop two new SDRs for MIMO detection and show their tightness under an easily checkable condition. This result answers an open question posed by So in 2010. Then, we shall briefly talk about the tighterness relationship between some existing SDRs for the MIMO detection problem in the literature. Finally, if time is allowed, we shall also talk about a branch-and-bound algorithm (based on the newly derived SDR) for globally solving the MIMO detection problem (and a more general class of nonconvex complex quadratic problems).

報告人:中國科學院數學與系統科學研究院計算數學所  劉亞鋒  副研究員

報告人簡介:2007年畢業于西安電子科技大學理學院數學系,2012年在中國科學院數學與系統科學研究院獲得博士學位(導師:戴彧虹研究員);博士期間,受中國科學院數學與系統科學研究院資助訪問明尼蘇達大學羅智泉教授一年。畢業後,他一直在中國科學院數學與系統科學研究院計算數學所工作,2018年晉升為數學與系統科學研究院副研究員。他的主要研究興趣是最優化理論與算法及其在信号處理和無線通信等領域中的應用,已在Mathematical Programming, SIAM Journal on Optimization, Mathematics of Operations Research等優化期刊以及 IEEE Transactions on Signal Processing, IEEE Journal on Selected Areas in Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Information Theory等IEEE交叉領域期刊發表論文三十餘篇。曾獲2011年國際通信大會“最佳論文獎”(由IEEE通信學會頒發),2015年WiOpt (International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks)“最佳學生論文獎”,2018年數學與系統科學研究院“陳景潤未來之星”,2018年中國運籌學會“青年科技獎”等。他目前擔任《IEEE Transactions on Wireless Communications》和《IEEE Signal Processing Letters》期刊的編委和《Journal of Global Optimization》期刊的客座編委。他是IEEE高級會員(Senior Member)、亞太信号與信息處理學會(Asia-Pacific Signal and Information Processing Association)無線通信和網絡(Wireless Communications and Networking)方向的技術委員會成員(Technical Committee)、中國運籌學會數學規劃分會副秘書長。

 

題目二:Semidefinite Relaxations for MIMO Detection: Tightness, Tighterness, and Beyond Some new parallel algorithm for the eigenvalue and SVD problems

内容簡介:HSS matrix is an important kind of rank-structured matrix, which can be used for solving integral equations, eigenvalue and SVD problems. In this talk we will introduce how to use it to accelerate the DC algorithm for the bidiagonal SVD problem and the tridiagonal eigenvalue problems. The proposed algorithm will be denoted by ADC. When dealing with large matrices with few deflations, ADC can be 3x faster than DC in the optimized LAPACK libraries such as Intel MKL without any degradation in accuracy. We further show another SVD algorithm based on Zolotarev’s Polar Decomposition algorithm, which is highly scalable. When implemented on parallel computers, it can be two times faster than the DC algorithm in ScaLAPACK. We will show some results obtained on Tianhe 2 Supercomputer.

報告人:國防科技大學計算機學院計算機所  李勝國  助理研究員

報告人簡介:計算數學博士,現為國防科技大學計算機學院計算機所助理研究員,2006年國防科技大學理學院應用數學專業本科畢業,2008年和2013年獲得國防科技大學的計算數學碩士和博士學位。2010-2012年再美國加州大學伯克利分校聯合培養兩年,師從Gu Ming教授。2013年底參加工作以來,主要從事并行算法設計、特征值計算、共性算法庫研制、Benchmark程序測試與優化工作,參與天河2A、銀河-X研制與系統調試工作,主持國家青年和湖南省面上自然科學基金各1項,曾榮獲湖南省優秀碩士論文和全軍優秀博士論文,發表SCI論文20多篇,兩篇進入ESI檢索前10%,部分論文發表在SIAM J. Sci. Comput., SIAM J. Matrix Anal. Appl., Numer. Math., Numer. Linear Algebra Appl. Parallel Computing等。

 

時  間:2019年9月17日(周二)上午9:30始

地  點:南海樓124室

 

熱烈歡迎廣大師生參加!

 

 

網絡空間安全學院

2019年9月16日