題 目:Riemann-Hilbert problems for null-solutions to iterated generalized Cauchy-Riemann equation on upper half ball
内容簡介:We study Riemann-Hilbert boundary value problems with variable coefficients for axially symmetric null-solutions to iterated generalized Cauchy-Riemann equation, defined over upper half unit ball centred at the origin in four dimensional Euclidean space. First, we prove an Almansi-type decomposition theorem for axially symmetric null-solutions to iterated generalized Cauchy-Riemann equation. Then, we give integral representation solutions to Riemann-Hilbert problems for axially symmetric null-solutions to iterated generalized Cauchy-Riemann equation over upper half unit ball centred at the origin in four-dimensional Euclidean space. In particular, we derive solutions to Schwarz problem for axially symmetric null-solutions to iterated generalized Cauchy-Riemann equation over upper half unit ball centred at the origin in four-dimensional Euclidean space. Finally, we further extend the results in previous section to axially symmetric null-solutions to iterated generalized Cauchy-Riemann oprator over upper half unit ball centred at the origin in four-dimensional Euclidean space.
報告人:中南大學 賀福利 副教授
報告人簡介:碩士研究生導師,美國數學評論評論員。主要從事複分析,Clifford分析,Riemann Hilbert問題及其相關,數學建模與應用等方向的研究,在《Computers & Mathematics with Applications 》、《Complex Variables and Elliptic Equations》、《Advances in Applied Clifford Algebras》、《Complex Analysis and Operator Theory 》、《Integral Transforms and Special Functions》、《Acta Mathematica Scientia》、《Boundary Value Problems 》、《Symmetry》、《數學學報》以及《數學年刊》等國内外刊物上發表論文20餘篇。
時 間:2019年7月6日(周六)下午4:00始
地 點:南海樓224室
熱烈歡迎廣大師生參加!
太阳集团1088vip
2019年7月3日