網絡空間安全學院學術講座(一、二)

發布時間: 2019-04-26 來源: 太阳集团1088vip

題目一:Revival Oscillation in Coupled Nonlinear Oscillators

内容簡介:Oscillatory behavior is essential for proper functioning of various physical and biological processes in a wide variety of natural systems,which are often composed of an ensemble of interacting oscillatory units. When the interaction occurs through a diffusive manner, the macroscopic oscillations can be suppressed by manifesting two structurally distinct oscillation quenching phenomena: amplitude death (AD) and oscillation death (OD).  The phenomena of AD and OD can be responsible for a loss of dynamic activity, which may cause a large degree of degradation in the functional performance of many real-world systems. The topic of revoking AD and OD to efficiently restore rhythmicity with a general technique is of practical importance, which is an open and challenging issue in nonlinear dynamics.  In this talk, we will discuss two different schemes to revoke both AD and OD in diffusively coupled nonlinear oscillators that we have proposed in [Phys. Rev. Lett. 111, 014101 (2013)] and [Phys. Rev. E 95, 062206 (2017)].

報告人:華南師範大學鄒為副教授

報告人簡介:廣東省青年珠江學者,2010年獲得中科院武漢物理與數學研究所應用數學博士學位,博士論文獲2011年度中國科學院百篇優秀博士論文獎,2011年10月至2013年9月獲得洪堡獎學金在德國柏林洪堡大學從事博士後研究工作,2016年2月至2018年2月在香港浸會大學從事香江學者博士後研究工作,長期從事複雜系統、非線性科學理論研究,在耦合非線性系統的群體動力學行為研究問題上取得系統成果。目前已在非線性動力學主流期刊發表SCI論文36篇, H指數15,SCI總引用800餘次。 以第一作者身份發表了20多篇學術論文,包括1篇Nature Communications及1篇Physical Review Letters等。主持并完成國家自然科學基金2項。

 

題目二:Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in temporal direction

内容簡介:A Newton linearized Galerkin finite element method is proposed to solve nonlinear time fractional parabolic problems with non-smooth solutions. Iterative processes or corrected schemes become dispensable by the use of the Newton linearized method and graded meshes in the temporal direction. The optimal error estimate in the $L^2$-norm is obtained without any time step restrictions dependent on the spatial mesh size. Such unconditional convergence results are proved by including the initial time singularity into concern, while previous unconditional convergent results always require continuity and boundedness of the temporal derivative of the exact solution. Numerical experiments are conducted to confirm the theoretical results.

報告人:華中科技大學李東方教授

報告人簡介:博導,中國系統仿真學會仿真算法專業委員會委員。主要從事微分方程數值解、系統仿真和信号處理等方面的研究。曾先後赴加拿大McGill大學,香港城市大學從事博士後研究。截至目前在《SIAM. J. Numer. Anal.》,《SIAM. J. Sci. Comput.》、《J. Comp. Phys.》、《Appl. Comp. Harm. Appl.》等多個國際著名計算學科SCI期刊上發表第一或者通訊作者論文40餘篇。主持國家自然科學基金面上項目、青年基金各一項,博士後基金一項,參與多項國家自然科學基金。先後獲得華中科技大學學術新人獎、香江學者獎等。

 

時  間:2019年5月1日(周三)上午9:00始

地  點:南海樓124室

 

 

熱烈歡迎廣大師生參加!

 

 

網絡空間安全學院

2019年4月26日