題 目:Some properties of Ricci flow with unbounded curvature and their applications
内容簡介:In this talk, we will give a brief introduction to W.-X. Shi's programme for Yau's uniformization conjecture. In 1970s, S.-T. Yau conjectured that any complex n-dimensional complete noncompact Kaehler manifold with positive bisectional curvature must be biholomorphic to complex n-dimensional Euclidean space. Shi used Hamilton's Ricci flow to study this conjecture. Up to 2006, Chau-Tam proved this conjecture with two more assumptions: the Kaehler manifold has bounded curvature and maximum volume growth. We hope to remove the assumption of bounded curvature. This leads to my work joint with Professor Luen-Fai Tam.
報告人:清華大學 黃少創 博士
時 間:2016年12月28日(周三)上午10:00始
地 點:南海樓三樓數學系師生研讨室
熱烈歡迎廣大師生參加!
太阳集团1088vip/網絡空間安全學院
2016年12月26日